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A matrix approach to the study of wave propagation 

Marko Robnik 
Department of Physics, University of Ljubljana, 61001 Ljubljana, Box 543, Yugoslavia? 

Received 27 July 1978, in final form 2 March 1979 

Abstract. Wave propagation in piecewise continuous stratified non-absorbing media is 
discussed. The general solution of the amplitude equation is expressed as a linear 
combination of two independent complex conjugate solutions. The transmission matrix 
relating the amplitudes at two points belongs to the group QU(2), in accord with energy 
conservation. An upper bound for the reflectance is calculated. In the high frequency limit, 
the reflection coefficient r corresponding to a discontinuity of the derivative of the refractive 
index is found to be inversely proportional to the frequency. The eiyenfrequencies of the 
field are shown to be completely determined by the reflection and transmission coefficients 
of the medium. 

1. Introduction 

In a recent paper (Robnik 1979, hereafter cited as I) a matrix method has been used to 
study solutions of the one-dimensional amplitude equation 

U " - ( U ' / U ) U ' + k 2 U  =o ,  (1) 
where k ( x )  is the x component of the wave vector, i.e. the component perpendicular to 
the strata. In the case of electromagnetic waves one must consider the two polarisa- 
tions. If the electric field is normal to the plane of incidence, u ( x )  denotes the complex 
amplitude of that field and v' = 0 (Landau and Lifshitz 1967); for formal reasons we 
shall use U = 1. In the other case U is the amplitude of the magnetic field and v ( x )  equals 
the dielectric constant. The parameters v and k are assumed to be real and positive, so 
that only non-absorbing stratified media are considered. 

The matrix approach in I is based on a step-function approximation for the 
parameters v and k, so that on each step U is expressed as a linear combination of 
exp(ikx) and exp(-ikx). But this is a rather special case which can be generalised very 
easily, as will be shown in subsequent sections. The generalised matrix formalism leads 
to some useful specific results and seems to be the proper starting point for a 
generalisation of the step-function approximation. 

2. Transmission matrices and their group property 

We shall analyse wave propagation in piecewise continuous media, such that the profile 
of each individual layer (x i ,  xjrl), j = 1,2 ,  . . . , n - 1, can be exactly described by the 
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functions v = vi(x) and k = k , ( x ) .  (The free space on the left will be labeled by 0, and on 
the right from the medium by n.) We assume that there exists in each layer a pair 
($ j ,  $7 ) of exact, linearly independent and complex conjugate solutions, so that the 
purely imaginary Wronskian 

W = 4 a,$*-** a,$ = - w* (2) 

does not vanish. The ordering of the pair (4, $*) is determined by the choice Im W < 0, 
so that i W = I Wl. The solution of equation (1) is then written as a linear combination 

U ( X )  = !Y/ W1*’2(A+(x)+Bt,b*(x)), (3) 

where for later convenience the constant ratio v/ W has been included in the definition. 
The constancy of v/ W follows from the Liouville theorem as applied to equation (1). 
The complex amplitudes A and B are constant in the given layer and are conveniently 
summarised in a two-dimensional complex amplitude vector v = (A, B) .  By aid of the 
vector f i x )  = (c/l*(x), cl/(x)) equation (3) can be rewritten in the form of the usual inner 
product, 

U = lv/ w11’2(v,f). (4) 

Our aim is to determine how U transforms on transition from layer to layer. That is, 
we are looking for a relation between the amplitude vectors U +  and U- on the right and 
on the left of a discontinuity. The boundary conditions which require that U ( X )  and 
u ’ ( x ) / v  are continuous can be expressed in matrix form as follows: 

s+v+ = s - U - ,  ( 5 )  

s = lv/wl’/2( Y - l  *? a,*, v-l  ** a,** ). 
Obviously det S = -i, so that S-’ exists. Thus 

U +  = Gv-, (7) 

with the transmission matrix 

G = SY’S- .  (8) 

Since the boundary conditions (5 ,6 )  guarantee that energy conservation is obeyed, 
an invariant proportional to the total energy flux in the x direction must exist. 
Repeating the argument given by Heading (1975) we multiply equation (1) by U* and 
integrate the imaginary part of the resulting expression. Thus 

J = Im(u‘u*/v) = *$(lAl’- /BIZ) =constant, (9)  

where the solution (3) has been inserted. In our case the positive sign, which cor- 
responds to Im W<O, must be taken. According to this convention A is always 
associated with the forward energy flux, while B refers to the backward flux. For 
instance, if Y’ = 0 and k = constant, we have CCI = exp(ikx) and W = -2ik, i.e. Im W < 0. 
If the time factor is given by exp(-id),  then A refers to the incident wave. 

The existence of the invariant J from (9) implies certain symmetry properties of the 
transmission matrix (8). In particular, since det G = 1 each transmission matrix belongs 
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to the group QU(2) (Vilenkin 1965), and can be written in terms of three real 
parameters 

exp[i(q5 + x)] cosh T, 
exp[-i(4 -x)] sinh T,  

exp[i(q5 - x)] sinh T 

exp[-i(4 +x)] cosh T 
G = (  

where T E (--CO, -CO), while 4 and ,y are confined to the interval [0,27r] if uniqueness of 
the representation (10) is required. We notice that 

G l l  = GT2 = i lv+v-/  W+ W - ~ ' " ( V ; ~ $ -  ax$? -VI'$? ax$-), 
GZ1 = GT2 = -ilv+v-/ W+ W-I (v i1$ -  ax$+- VI'$+ a,$-), 

1 /2  (11) 

where $+ and 4- refer to the right and left sides of the discontinuity respectively. 

responding to the whole stratified structure will be equal to the product 
For n discontinuities at the points x l r  x2, . . . , x, the transmission matrix G cor- 

so that U, = Guo. Since the resulting transmission matrix G again belongs to QU(2), it 
too can be expressed in the form (10). 

If for x > x, there is only a transmitted wave, i.e. U ,  = (A,, 0 ) ,  the identity 

G21Ao + G22Bo = 0 

must be satisfied, whence an expression for the reflection coefficient r of the multilayer 
structure follows: 

r = BO$$ (xd/Ao$dxl) = -G21(//0* (xI)/Gzz$o(xI). 

r = -(exp(2ix) tanh T) ($o* /$o) ,  

(13) 

With the aid of expression (10) this can be rewritten in parameter form 

(14) 

where the argument of the 4's  has been omitted. The reflectance equals 

lr12 = tanh2 T. 

The reflection coefficient r as defined in equation (13) is what is needed for the 
physics. However, for mathematical manipulation the ratios R = B o / A o  and T = 
A,/Ao may be more suitable. For the incidence from the right, i.e. U,, = (A;, BL) and 
vo = (0 ,  BA), we define correspondingly R' = A;/BL and T' = Bb/BL. Then the simple 
algebraic equations U,, = GOO lead to the result 

(15) 

These symmetries have already been proven by Heading (1978). One should notice 
that the symmetry properties of the transmission matrix G are essential for the 
conclusion (15). 

If the medium is continuous everywhere and if $ solves equation (1) in the whole 
region, then the amplitudes A and B will be constant throughout the medium, so that 
G = I = identity matrix. In this case there will be no reflection. This occurs only in very 
special cases. One therefore concludes that a partition of the medium is almost always 
necessary and G is expressed as a product of transmission matrices corresponding to the 
partition points. 

T = T' = 1/G22, R'IT' = Glz/Gz2 = - R * / T * .  
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3. An upper bound to the reflectance 

To evaluate an upper bound of the reflectance Ir/' it is useful to introduce the matrix 
norm llGlla of transmission matrices. This norm is defined by the maximum absolute 
row sum (Isaacson and Keller 1966) 

IIGIIm = max{lGtlI + IG12/, IGzll+ IGzz/}. 

According to equation (10) we have simply 

IlGllm = expld  

The norm of a product of matrices is less than 

IlGIladf j = 1  llG/ll-J 

so that 

An upper bound for the reflectance follows, 

/rI' = tanh217/ s tanh'(iz 1.1). 
j = l  

As an example we consider step functions. 

(16) 

the product of the corresponding norms: 

(18) 

In this case the result is extremely simple 
(I), 1 ~ ~ 1  = ilAi(log k/v)j, where Ai(log k/v) is the jump of log k / v  at the discontinuity. 
The inequality (18) results in 

lri2 s tanh'[$'lr(log k l v ) ] ,  (19) 

where V(log k/v) designates the total variation of the step function log k/v. 

we have ?"(log k / v )  = n log(k2vl/k1v2), so that 
If there are n jumps up and down between two levels kl/vl  and (k2/vz) a (k l /v l ) ,  

This upper limit can actually be reached if the thickness of each layer is 1/4 of the 
wavelength, a fact well known from the optics of thin films. 

4. A condition for the eigenfrequencies of the field 

We now wish to consider the determination of the eigenfrequencies of the field in a 
stratified medium. As an example we take the boundary conditions that the field U 
vanishes at the boundaries x o  and xl, i.e. 

U ( x o )  (uo ,  fo) = 0, U ( x i ) a ( u o ,  Gtfi)= 0 ,  

where Gt is the adjoint of G, and u1 = GOO. This system of equations has non-trivial 
solutions for uo = (Ao, Bo) if its determinant vanishes, which means 

Im[lLT((lIoGzz-G21(j10*)1=0. 
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By analogy with the reflection coefficient r from (13) we define the transmission 
coefficient d = Tqbn(xn)/$o(xl). If r(xo, x I )  and d(xo, xl)  refer to the medium between 
xo and xl, the above condition can be written as 

I d E l +  ~ ( x o ,  x d l l d ( x ~ ,  XI))= 0. (20) 

This exact result is very useful if r and d can be explicitly calculated by means of some 
approximation. Frequencies for which r and d satisfy the condition (20) are the 
eigenfrequencies of the field. For instance, the first WKB approximation gives r = 0 and 

so that the well known condition 

lX: k(yj  dy = m.rr, m = 1 , 2 , .  . . , 

follows. An improved approximation for r and d can be found in (I). 

5. Reflection due to a discontinuous derivative of the refractive index 

Suppose that in the vicinity of the origin k is linear, k(x) = a + bx, with b, and 6- on the 
right and on the left respectively. Thus the wavenumber is continuous, but not its 
derivative. The task of this section is to determine the transmission matrix correspond- 
ing to such a discontinuity. Only the high frequency limit for waves of normal incidence 
(Y = 1) will be considered. 

First we look for exact solutions of equation (1) for a linearly varying k. The desired 
complex conjugate solutions can be expressed in terms of Hankel functions (Jahnke et 
a1 1960): 

CC, = exp[- i (a2/2/bi-3.rr /8)](a +bx)”2H:y’4[(a +bxj2/2jbl]. 

W = -i8b/.rr, (22) 

(21) 

The Wronskian equals 

so that Im W is negative if b is positive. For negative b the function qb must be replaced 
by its complex conjugate. The constant exponential factor in front is so arranged that 
for a finite x and in the limit / b /  .+ 0 the function 1 W/-”2$ approaches (2a)-’/’ exp(iax). 

For sufficiently high frequencies we may use the asymptotic expression for H(1>L, so 
that equation (21) reduces to 

$ ={4ibl/[.rr(a + b ~ ) ] } ” ~  exp(iax), (23) 

independent of the sign of b. To this degree of approximation the Wronskian W = 
-i8/bj/.rr remains unchanged. Then calculation in the sense of equations (11) results in 

Gll  = 1 -iAb/4a2, G12 = -ihb/4a2, (24) 

where Ab = b, - b-. A simple expression for r is obtained from equation (13), namely 

r = --i(Ab/4a2j/(1 +i(Ab/4a2)j. (25) 
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On neglecting the second term in the denominator we rewrite this in terms of the wave 
number k and the jump Ak' of its derivative, 

r = -iAk'/4k2. (26) 

This result is in agreement with the expression given by Ginzburg (1961). 
It is instructive to compare this result with that for a step of the wave number. In the 

latter case the reflection coefficient is independent of frequency, and the phase change 
of the reflected wave equals zero or T. On the other hand if only the derivative of k is 
discontinuous, r is inversely proportional to the frequency and the phase change equals 
-7112 or ~ / 2  for positive and negative hk', respectively. 

6. Comments 

The matrix formalism developed in 9 2, which really seems elementary provides a useful 
algorithm in calculating reflectivity in cases where the exact solutions in each region of 
the medium are known, but must be related to each other at the boundary between the 
domains. The procedure simply replaces the usual treatment of boundary conditions. 
How it can work in specific cases will be shown in a separate work dealing with reflection 
from an asymmetric stratified medium with a resonance point. In the present paper my 
intention was to show that the algorithm developed so far enables us to derive some 
general relations, which are difficult to see if the boundary conditions are treated in a 
conventional manner. On the other hand, a more important application is expected 
through elaborating an improved explicit and analytic approximation for the reflectivity 
of a stratified medium. This would be a generalisation of the method in the previous 
paper I. A preliminary attempt based on piecewise linear functions for the wave 
number k shows some promise in this respect. 
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